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Abstract: The disposal of unexploded ordnance (UXOs) at sea is a global problem. The mapping and
remediation of historic UXOs can be assisted by autonomous underwater vehicles (AUVs) carrying
sensor payloads such as synthetic aperture sonar (SAS) and optical cameras. AUVs can image large
areas of the seafloor in high resolution, motivating an automated approach to UXO detection. Modern
methods commonly use supervised machine learning which requires labelled examples from which
to learn. This work investigates the often-overlooked labelling process and resulting dataset using
an example historic UXO dumpsite at Skagerrak. A counterintuitive finding of this work is that
optical images cannot be relied on for ground truth as a significant number of UXOs visible in SAS
images are not in optical images, presumed buried. Given the lack of ground truth, we use an ordinal
labelling scheme to incorporate a measure of labeller uncertainty. We validate this labelling regime
by quantifying label accuracy compared to optical labels with high confidence. Using this approach,
we explore different taxonomies and conclude that grouping objects into shells, bombs, debris, and
natural gave the best trade-off between accuracy and discrimination.

Keywords: synthetic aperture sonar (SAS); unexplored ordnance (UXO); machine learning

1. Introduction

In the aftermath of World War II, it is estimated that over 700,000 tons of chemical
weapons were dumped in European waters [1]. These historic UXOs are part of a worldwide
problem caused by live firing and the disposal of surplus stocks. One such dumpsite used
by British and American forces was Skagerrak. This dumpsite is located off the south coast
of Norway at a depth of approximately 700 m. Here, the seabed is generally flat, consisting
of fine sediment with sparse rock coverage. Visible craters from the sinking of ships laden
with munitions suggest minimal sediment transport in the area [2]. On sinking, some ships
stayed intact whilst others broke apart, shedding chemical munitions over a large area of
seafloor. The large areas and inaccessible sites make locating and classifying UXOs on the
seafloor challenging.

Despite the challenges, autonomous underwater vehicles are capable of surveying
large areas of the seafloor using a range of sensing equipment: synthetic aperture sonar
(SAS) [3], from multiple views combined with optical images, provides a rich source of
information. The vast amount of data collected from these surveys necessitates automated
approaches to target recognition (ATR). State-of-the-art approaches to ATR with imaging
sonars tend to use deep learning trained in a supervised fashion [4–6]. This approach
requires a large dataset of labelled examples for tuning the parameters of the deep learn-
ing model.

Safeguarding marine activities motivates understanding the location and extent of
UXOs dumped at Skagerrak and elsewhere. Although a lot of studies focus on model
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design and training regimes, the challenges of applying automated target recognition to
historic UXOs are more fundamental. Placing known targets on the seafloor can be used for
data collection. However, long exposure to the subsea environment and the impact of debris
and piled objects limit the realism of placed targets. Additionally, identifying targets with
divers [7] or recovering samples [8] from Skagerrak is difficult due to unknown amounts of
chemical weapon agents remaining and the inaccessibility of the site. Therefore, no true
ground truth exists, which is problematic for training and validating a supervised learning
method. The labelling procedure and analysis of these labels is therefore an important
consideration for guiding future machine learning efforts.

In this work, we label a historic UXO dumpsite from which we present and quantify
considerations necessary for future machine learning research efforts. To this end, we
develop a labelling methodology suitable for capturing label uncertainty given degraded
targets and limited image quality. We aim to use the rich source of multi-view and multi-
mode data available from Skagerrak to quantify the effect of look angle and sensor mode
on target visibility. We also aim to quantify the human labelling effort and accuracy of those
labels compared to high-quality optical images. The objective of this work is to provide a
guide for future machine learning efforts and to inform the feasibility of mapping UXOs in
terms of object visibility and taxonomy.

2. Autonomous Surveys

In 2015 and 2016, surveys covering 450 km2 of seafloor were conducted at Skagerrak
by the Norwegian Defence Research Establishment (FFI) [9]. This large survey was made
possible by the use of a Kongsberg HUGIN autonomous underwater vehicle (AUV) fitted
with an optical camera and synthetic aperture sonar; details of these sensors are in the
following paragraphs. A total of 36 shipwrecks believed to contain chemical munitions
were found and documented [9]. UXO types, along with examples of debris and natural
clutter, imaged by SAS are shown in Figure 1. In 2019, a smaller subsection of the survey
area was re-surveyed with an optical camera carried by the HUGIN AUV.

The optical sensor used was a Tilefish downward-looking camera with a 400 W strobe
LED array [9]. The 10.7 megapixel camera captures small details, imaging the seafloor
as a perspective projection of the 3D environment at 1 mm resolution [10]. However, the
coverage rate is limited by a downward-looking geometry with a short stand-off, a result
of the strong attenuation of electromagnetic waves in water (shown in Figure 2). For a
typical AUV altitude of 6 m and speed of 2 m/s, the area coverage rate becomes 12 m2/s, or
0.043 km2/h [9]. At depth, a colocated illumination source is necessary; this arrangement
does not produce a significant shadow when looking at proud objects. Additionally,
sediment deposited on sunken objects produces reflectivity similar to that of the seafloor,
leading to low-contrast images.

The other primary sensor used on the HUGIN vehicle was a HISAS synthetic aperture
sonar with a centre frequency of 100 kHz and a 30 kHz bandwidth [11]. Active sonar
emits an acoustic signal and infers information about the environment from the time delay
and intensity of the echo [3]. Sonar resolution is limited by its aperture size; to improve
resolution synthetic aperture sonar (SAS) is a technique for generating a large aperture on
a moving vehicle. In this study, the FOCUS software developed by FFI was used to process
the raw data (see [12] for more details on the SAS processing pipeline for the HUGIN
AUV). The output typically used for target recognition, and indeed used in this study, is
an intensity image where pixel values correspond to echo strength. It is an orthographic
projection of the 3D space which has an aerial-photograph-like quality [3].

Good acoustic propagation in water permits a large effective range of 200 m per side (at
2 m/s vehicle speed) and hence a greater instantaneous coverage rate: 2.88 km2/h at 4 cm
resolution [9]. The divergence of acoustic signal means that objects at a greater distance
are ensonified by more pings. The synthetic array can therefore be longer, allowing range-
independent resolution. SAS is typically operated at a shallow grazing angle, resulting in
a strong reflection and shadow, highlighting proud objects (Figure 2). Furthermore, the
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high density of metallic objects (e.g., UXOs) returns a strong acoustic echo, giving a good
contrast to background sediment. The major drawback is limited resolution; this means
small targets have poor detail, being represented by only a few pixels.

Figure 1. Objects (dangerous and harmless) found at Skagerrak, with examples from synthetic
aperture sonar (all SAS images are at the same scale). Historic photos of UXOs before dumping at
Skagerrak can be found in [1].
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Figure 2. The geometry of data collection from an autonomous underwater vehicle (AUV). Synthetic
aperture sonar (SAS) images the seafloor at a low grazing angle. Optical images are taken from a
top-down orientation illuminated by a colocated light on the AUV. A typical AUV fly height for
camera runs is six meters and 25–30 m for SAS runs in deep waters.

3. Labelling Methodology

The lack of ground truth in the survey area creates a need for a labelling method that
incorporates uncertainty. To this end, we have used an ordinal labelling scheme, whereby
each detected object is assigned one or more classes arranged in order of likelihood by the
human labeller. A ranked list is a more natural and consistent process for a human labeller
compared to assigning numeric values (e.g., probabilities) [13,14]. Various schemes exist for
capturing object location (e.g., centre of object, bounding box, oriented bounding box, pixel
mask) [15]. However, we chose to use rectangular boxes as a trade-off between precision
and labelling efficiency. Note that there are automatic approaches that refine the imprecise
boundaries, e.g., GrabCut [16], making labelling pixel-precise boundaries hard to justify.
The entire Skagerrak survey area is 450 km2, but only 0.1 km2 of it was labelled, taking 35 h
(more details are provided in Section 4). A single person (the lead author) performed the
labelling of the multi-sensor data, via a custom-made user interface.

The labelling process was initiated on a SAS image. The image was methodically
scanned, and all observed objects were bounded by a rectangular box. Each of these
objects was assigned a ranked list of likely classes. The available classes are as follows and
were selected based on prior knowledge of the expected chemical munition types at the
dumpsite [1]:

• KC500 (500 kg bomb).
• KC250 (250 kg bomb).
• KC50 (50 kg bomb).
• 150 mm shell.
• 105 mm shell.
• Debris (anthropogenic).
• Natural.
• Not observed (available for relabelling only).

The initial labelled SAS image was used to define a common coordinate system in
which all subsequent images were referenced. The bounding boxes from this previously
labelled image are then overlaid onto overlapping images for independent relabelling in
the different views, e.g., the optical image shown in Figure 3b. A bounding box from
an alternative view or modality may not contain an observable object. Therefore, a “not
observed” label was required for these cases. Any additional objects detected would also
be bounded and a second pass performed on previously labelled images to label any
missed objects.

Examples of two detected and labelled objects from a SAS image are given in Figure 3a.
In one case, the object has been labelled as a likely 500 kg bomb, but with uncertainty due
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to its resemblance to a bolder (natural). In the other case, the object has been labelled with
less certainty, due to its size and shape being similar to a 50 kg bomb, a 150 mm shell, and
possibly debris due to its high aspect ratio. In this case, greater detail from an overlapping
optical image (Figure 3b) allowed the larger object to be labelled as a 500 kg bomb, with
no feasible alternatives: high certainty. The other object, however, was not visible in the
optical image so is labelled “not observed”.

(a) (b)
Figure 3. Object labels consist of plausible classes in order of likelihood. Class likelihood is a function
of position within the label and label length. (a) SAS image with labels, and (b) optical image of the
same patch of seafloor with superimposed bounding boxes relabelled. Motivation for the classes
chosen is given in Section 3.

While the relabelling from different views was performed independently, the bounding
box size may influence the human labeller because the size and aspect ratio implies specific
UXO types. In the case of piled objects, the distinction between individual objects is not
always clear, and segmentation of amorphous regions may be more suitable than the
counting of individual UXOs in these areas. In summary, the probability of an object
belonging to a class is some unknown function of the class’s rank (position in the ordinal
list) and the length of the list. Rank reciprocal (inverse) [17], rank sum (linear) [17], and
rank ordered centroid [18] are some common mappings used in multicriteria decision-
making. These are consistent with our ability to rank classes. However, without a method
for validating the choice of mapping the simplest regime, rank sum is recommended. The
multi-class, multi-view modality labels do, however, provide a rich source of information
that is representative of the precision of a human labeller.

4. Results

The labelled dataset covers an area of 0.1 km2; this is only 0.02% of the total 450 km2

surveyed area shown in Figure 4. However, we chose the area as it is representative of
many challenging scenarios: piled objects, a variety of debris types, and sparse and dense
regions. The 0.1 km2 labelled area resulted in 8920 labels of 5331 objects. A single user
was able to average one label every 14.2 s, taking 35 h total. Taking a “worst-case” area for
labelling, as we have done, is a compromise for generating representative datasets with
limited labelling resources.

The labels themselves consist of multiple classes. In Figure 5, we calculate the ratio of
labels containing different combinations of classes in addition to the distribution of classes.
This analysis revealed that the labeller frequently could not differentiate between objects of
similar size. The labeller also found it challenging to distinguish debris, a result of debris
having no expected size or shape. Historic UXOs are exposed to a corrosive environment
for potentially many decades. This results in decay, biofouling, and partial or full burial,
further impeding human labelling. Grouping debris and natural objects would alleviate a
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frequently confused pair; however, debris is useful to classify as it indicates the presence of
UXOs nearby. Grouping classes of similar objects, however, is a sensible conclusion from
this result, which we investigate later.

Figure 4. Suspected chemical weapons wrecks at Skagerrak [9]. The extent of the labelled area is
barely visible at the scale of the full survey area. Two sonar views used for labelling are shown.

Munition types are manufactured and disposed of in varying quantities, therefore,
a labelled dataset reproduces this imbalance. Figure 5b quantifies the imbalance in the
Skagerrak UXO dataset with many more cases of small munitions (shells) than larger
munitions (bombs). However, the number of dangerous and harmless objects is more
balanced. The Imbalance between classes is a necessary consideration for the application of
machine learning to avoid bias towards overrepresented classes. Practical solutions involve
balancing the distribution (data-level), modifying the learning algorithm to alleviate bias
(algorithm-level), or a combination of both (hybrid method) [19].
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Figure 5. (a) Confusion matrix: Percentage of labels with primary class (Y-axis) that also contain
(alternative) class (X-axis). Along the diagonal is the percentage of labels that contain only one class.
(b) Distribution of unexploded ordnance (UXO) classes across different label lengths (uncertainty
estimate).

At 100 kHz, the HISAS is capable of some penetration of sediment [2], allowing
shallowly buried objects to be detected. We presupposed that the “not observed” labels
for optical images correspond to buried objects. We quantify the extent of suspected
burial in Figure 6 alongside examples of SAS images with their optical image counterparts
taken from Skagerrak. We observed that small dense objects (shells) are more frequently
buried compared to larger objects (bombs). The high proportion of buried objects is
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surprising, as optical images are commonly considered as providing a means of validating
SAS classifications [9].
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Figure 6. Observability of different objects across imaging modes: (a) The same section of seafloor
imaged by SAS (visible objects) and optical (presumed buried objects). (b) Percentage of objects
visible in SAS image but not optical.

The comparison between image modalities can also be made between multiple SAS
views of the same objects. In Figure 7, we quantify the impact of the SAS look direction
on object visibility, alongside some examples from the Skagerrak dataset. From Figure 7a,
we observed that the visibility of an object’s highlight and shadow can depend on its
orientation. In certain cases, an object can be near-invisible from an alternative SAS look
direction, and our labels show that this is more likely for smaller objects.
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Figure 7. Observability of objects across imaging modes: (a) The same section of seafloor viewed
from perpendicular SAS look directions. (b) Percentage of objects not visible in all SAS look directions
(typically perpendicular).
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One challenge we have identified, but are not able to quantify, is target variability:
various states of assembly and decay reduce the clarity for a labeller. Instead, we quan-
tify label accuracy, which is a consequence of target variability combined with the other
challenges discussed previously. The best optical labels were identified from having only
a single class assignment. The detail visible in optical images permits high confidence in
these labels, which are used as pseudo ground truth. Figure 8 shows the result of assessing
SAS labels against this pseudo ground truth.

Both class position and label length correlate negatively with accuracy, and this vali-
dates our use of ordinal lists for likely classes. However, 60% accuracy for the best SAS
labels (green) limits the feasability of applying supervised learning (for a comprehensive
review of methods robust to noisy labels, see [20]). Furthermore, of the 5331 objects from
SAS images, only 585 have optical overlap. This is generally the case due to a much
slower coverage rate of 0.043 km2/h for optical images compared with 2.88 km2/h for SAS
(see Section 2 for more details). Additionally, only 290 of the 585 optical images provide
“pseudo ground truth” as many are obscured by partial burial and degradation. This is
an insufficient number for typical supervised learning approaches [21]. The accuracy can,
however, be improved by grouping into fewer classes. Using only two very broad classes
of harmless versus dangerous yields an improvement in accuracy from 60% to over 80%.
Separating instead into similar-sized UXOs (bombs, shells, debris, and harmless) does not
significantly reduce this improvement, and provides a good trade-off for discrimination
versus accuracy.
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Figure 8. The Accuracy of labels compared to pseudo ground truth (best optical labels) for label length
(green, orange, and red) and class position within the label (X-axis). Three different class groupings
are explored: (a) individual UXO types; (b) shells, bombs, debris, and natural; (c) dangerous and
harmless. Accuracy is calculated as a beta distribution from a Bernoulli likelihood (“N” successes
and failures) with beta (1,1) uninformative prior.

5. Conclusions

We have defined a methodology for labelling multi-modal and multi-view images
of objects on the seafloor. The methodology is intended for applications where ground
truth information is unavailable, for example, at historic UXO dumpsites. It has been
demonstrated on multi-view SAS and optical survey data collected from the Skagerrak
chemical munitions dumpsite in Norway, where the target objects are bombs and shells
amidst a field of debris and natural clutter.

A counterintuitive finding in this study was the revelation that the optical survey data
do not provide sufficient ground truth of the chemical munitions dumpsite at Skagerrak
for adequately labelling the objects. This is because a significant proportion of objects
are buried and these are visible in the acoustic images and not the optical images. The
low accuracy of labels (particularly for SAS data) and a small number of optical “pseudo
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ground truth” labels motivate future research into self-supervised learning [22]. This is
where a small amount of labelled data is used to bootstrap learning from a large amount of
unlabelled data.

Using only optical labels with high confidence as pseudo ground truth (i.e., non-buried
objects only), we quantified accuracy for the three class assignment schemes: (1) unique
classes for specific UXOs (e.g., 500 kg bomb, 250 kg bomb, etc.); (2) simplified groupings of
UXOs (e.g., bombs, shells, debris, and natural); and (3) a binary dangerous versus harmless
label. We concluded from this work that the simplified grouping (shells, bombs, debris,
and natural) gave the best trade-off between accuracy and discrimination: −60% for seven
classes versus 80% for four classes.
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